Publication Information:
Journal of Energy and Power Engineering is published monthly in hard copy (ISSN 1934-8975) and online (ISSN 1934-8983) by David Publishing Company located at 1840 Industrial Drive, Suite 160, Libertyville, Illinois 60048, USA.

Aims and Scope:

Editorial Board Members:
Prof. Ramesh K. Agarwal (USA), Prof. Hussain H. Al-Kayiem (Malaysia), Prof. Zohrab Melikyan (Armenia), Prof. Prameswar Mahanta (India), Prof. Carlos J. Renzo Estébane (Spain), Prof. Mohamed Ahmed Hassan El-Sayed (Trinidad and Tobago), Prof. Carlos Redondo Gil (Spain), Prof. Roberto Cesar Betini (Brazil), Prof. Rosário Calado (Portugal), Prof. Dr. Ali Hamzek (Germany).

Manuscripts and correspondence are invited for publication. You can submit your papers via Web Submission, or E-mail to energy@davidpublishing.com or info@davidpublishing.com. Submission guidelines and Web Submission system are available at http://www.davidpublishing.com.

Editorial Office:
1840 Industrial Drive, Suite 160, Libertyville, Illinois 60048
Tel: P:847-281-9862
Fax: 1-847-281-9855
E-mail: energy@davidpublishing.com; info@davidpublishing.com

Copyright©2011 by David Publishing Company and individual contributors. All rights reserved. David Publishing Company holds the exclusive copyright of all the contents of this journal. In accordance with the international convention, no part of this journal may be reproduced or transmitted by any media or publishing organs (including various websites) without the written permission of the copyright holder. Otherwise, any conduct would be considered as the violation of the copyright. The contents of this journal are available for any citation. However, all the citations should be clearly indicated with the title of this journal, serial number and the name of the author.

Abstracted / Indexed in:
- Database of EBSCO, Massachusetts, USA
- Database of Cambridge Science Abstracts (CSA), USA
- Chinese Database of CEPS, American Federal Computer Library Center (OCLC), USA
- Ulrich's Periodicals Directory
- Summon Serials Solutions
- Chinese Scientific Journals Database, VIP Corporation, Chongqing, China
- Chemical Abstracts Service (CAS)

Subscription Information:
Price:
- Print $480 (per year)
- Online $320 (per year)
- Print and Online $600 (per year)

David Publishing Company
1840 Industrial Drive, Suite 160, Libertyville, Illinois 60048
Tel: 1-847-281-9862. Fax: 1-847-281-9855
E-mail: order@davidpublishing.com

David Publishing Company
www.davidpublishing.com
Contents

Clean and Sustainable Energy

1005
A Proposed Core Catcher System and Thermite Experimental Results
H.Y. Kim, J.H. Kim, K.S. Ha, J.H. Song and J.H. Park

1015
Modeling of Solar Thermochemical Receiver
A. Torres, R. Lugo, M. Salazar and E. Bonilla

1021
Heating and Cooling Hybrid System with Gas Mixture Sourced Heat Pump and Heating Boiler
S. Egnatosyan and Z. Melikyan

1030
Technical and Economic Aspects of Solar Space Heating in Palestine
M. Awad

1041
The Possibilities of Improving Underground Coal Gasification Processes
K. Kostir

1053
Simulation of Solar Radiation Conditions in Coastal and Continental Areas by Using a New Algorithm
P. Monowe and N. Yifegorodov

1063
PIV Studies on Turbulence Structure in Air/Water Interface with Wind-Induced Water Waves
M. Sunjou, I. Nezu and A. Toda

Power and Electronic System

1068
High-Frequency Digital Controller Applied to Voltage Regulator Modules
C.E. Carrejo, C.A. Ramos-Paja, C. Lahore, B. Estibals and C. Alonso

1078
A Fuzzy Logic Controller for Maximum Power Point Tracking with 8-Bit Microcontroller
Y.R. Yang

1087
Methodology for Obtaining Electricity-Price Patterns in Customer Response Programs
A. Gobaldón, A. Guillamón, M.C. Ruiz, S. Valero, M. Ortiz, C. Senabre and C. Alvarez

1096
Analysis of Offshore Wind Power: Application to Southern Thailand
J. Waeysak, C. Kongrungruang, M. Landry and Y. Gagnon

1102
Study on Over-Voltage of 220 kV Transformer’s Neutrals and Protection Strategy
H.P. Yu, S.M. Chen, P.C. Yang, H. Yin and G.L. Wu

1109
The Implementation of Radiological Characterization for Reactor Decommissioning
J.X. Deng, H.S. Shao, X. Li and F. Deng
Methodology for Obtaining Electricity-Price Patterns in Customer Response Programs

A. Gabaldón, A. Guillamón, M.C. Ruiz, S. Valero, M. Ortiz, C. Senabre and C. Alvarez

1. Department of Electrical Engineering, Universidad Politécnica de Cartagena, Murcia 30202, Spain
2. Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, Murcia 30202, Spain
3. Department of Mechanical and Energy Engineering, Universidad Miguel Hernández, Alicante 03202, Spain
4. Institute of Energy Engineering, Universidad Politécnica de Valencia, Valencia 46022, Spain

Received: December 02, 2010 / Accepted: March 31, 2011 / Published: November 30, 2011.

Abstract: The main objective of electricity regulators when establishing electricity markets is to decrease the cost of electricity through competition. However, this scenario cannot be achieved without a full participation of the electricity demand by reacting against electricity prices. The aim of this research is to develop tools for helping customers and aggregators to join price and demand response programs, while helping them to hedge against the risk of short-term price volatility. In this way, the capacity of and hybrid methodology (Self-Organizing Maps and Statistical Ward’s Linkage) to classify high electricity market prices is analyzed. Besides, with the help of Non-Parametric Estimation, some price-patterns were found in the abovementioned clusters. The contained knowledge within these patterns supplies customer market-based information on which to base its energy use decisions. The interest for this participation of customers in markets is growing in developed countries to obtain a higher elasticity in demand. Results show the capability of this approach to improve data management and select coherent policies to accomplish cleared demand offers amongst different price scenarios in a more flexible way.

Keywords: Clustering, customer demand response, customer price response, demand elasticity, electricity markets.

1. Introduction

The participation of customers in electricity markets is a basic concern for achieving a better market operation. The market will not be complete until demand and supply sides could compete on an equal footing and have “similar” possibilities and products to participate both in energy and ancillary markets [1].

U.S. Department of Energy reported in 2006 [2] that “the most important benefit of demand response is improved resource-efficiency of electricity generation and transmission due to closer alignment between customer electricity prices and the value they place on electricity”. This increased efficiency should create a variety of benefits, for example, participant benefits (the bill savings and costs earned by customers that adjust their electricity demand in response to time-varying prices), market-wide financial benefits (demand response helps to drive production costs, to reduce peak spikes and mitigate the ability to exercise market power by raising supply power prices) and reliability benefits (demand response lowers the likelihood and consequences of outages, both for customers and utilities).

Obviously, small and medium sized customers face serious barriers to participate in electricity markets. For example, one of these barriers is the price. Without price information, customers do not have any reason to make investments or changes in energy patterns [3] (they do not have well-developed price response capabilities). Other barriers are: the minimum size of